

# **ADEC Protocol Specification**

for TLS-Compatible Traffic Data Acquisition Using TDC1, TDC3 and TDC4 Series of Traffic Detectors

Version 2.0

| 1 | P                                                                 | JRPOSE                                                                                                                                                                                                                                               | 3                                                                   |
|---|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 2 | P                                                                 | RINCIPLE                                                                                                                                                                                                                                             | 3                                                                   |
| 3 | P                                                                 | ROTOCOL FORMAT                                                                                                                                                                                                                                       | 3                                                                   |
|   | 3.1                                                               | Вуте                                                                                                                                                                                                                                                 | 3                                                                   |
|   | 3.2                                                               | Раскет                                                                                                                                                                                                                                               | 3                                                                   |
|   | 3.3                                                               | LONG FRAME, VARIABLE LENGTH                                                                                                                                                                                                                          | 3                                                                   |
|   | 3.4                                                               | SHORT FRAME, 5 BYTES FIXED LENGTH                                                                                                                                                                                                                    | 3                                                                   |
|   | 3.5                                                               | Single Character                                                                                                                                                                                                                                     | 4                                                                   |
| 4 | C                                                                 | OMMUNICATION                                                                                                                                                                                                                                         | 4                                                                   |
|   |                                                                   | DATA FLOW                                                                                                                                                                                                                                            |                                                                     |
|   | 4.1<br>4.2                                                        | DATA FLOW                                                                                                                                                                                                                                            |                                                                     |
|   | 4.2<br>4.3                                                        | THE CONTROL BYTE                                                                                                                                                                                                                                     |                                                                     |
|   | 4.5                                                               |                                                                                                                                                                                                                                                      | э                                                                   |
| 5 | П                                                                 | ATA SPECIFICATION                                                                                                                                                                                                                                    | 6                                                                   |
| Э |                                                                   |                                                                                                                                                                                                                                                      |                                                                     |
| 2 | 5.1                                                               | RESET COMMUNICATION AND FCB BIT                                                                                                                                                                                                                      | -                                                                   |
| 5 |                                                                   |                                                                                                                                                                                                                                                      | 6                                                                   |
| 5 | 5.1                                                               | RESET COMMUNICATION AND FCB BIT                                                                                                                                                                                                                      | 6<br>6                                                              |
| 5 | 5.1<br>5.2                                                        | RESET COMMUNICATION AND FCB BIT                                                                                                                                                                                                                      | 6<br>6<br>7                                                         |
| 5 | 5.1<br>5.2<br>5.3                                                 | RESET COMMUNICATION AND FCB BIT<br>USER DATA<br>TICK VALUE                                                                                                                                                                                           | 6<br>6<br>7<br>8                                                    |
| 5 | 5.1<br>5.2<br>5.3<br>5.4                                          | RESET COMMUNICATION AND FCB BIT<br>USER DATA<br>TICK VALUE<br>RETRIEVING JPEG PICTURES FROM TDC4 DETECTORS                                                                                                                                           | 6<br>7<br>8<br>.10                                                  |
| 6 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6                            | RESET COMMUNICATION AND FCB BIT<br>USER DATA<br>TICK VALUE<br>RETRIEVING JPEG PICTURES FROM TDC4 DETECTORS<br>TRAFFIC DATA                                                                                                                           | 6<br>7<br>8<br>.10<br>.12                                           |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6                            | RESET COMMUNICATION AND FCB BIT<br>USER DATA<br>TICK VALUE<br>RETRIEVING JPEG PICTURES FROM TDC4 DETECTORS<br>TRAFFIC DATA<br>DETECTOR STATUS                                                                                                        | 6<br>7<br>8<br>.10<br>.12<br>.13                                    |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>TI                      | RESET COMMUNICATION AND FCB BIT<br>USER DATA<br>TICK VALUE<br>RETRIEVING JPEG PICTURES FROM TDC4 DETECTORS<br>TRAFFIC DATA<br>DETECTOR STATUS<br>S EXAMPLES                                                                                          | 6<br>7<br>8<br>.10<br>.12<br>.12<br>.13                             |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>TI<br>6.1               | RESET COMMUNICATION AND FCB BIT<br>USER DATA<br>TICK VALUE<br>RETRIEVING JPEG PICTURES FROM TDC4 DETECTORS.<br>TRAFFIC DATA<br>DETECTOR STATUS<br>S EXAMPLES<br>INITIALIZATION OF COMMUNICATION                                                      | 6<br>7<br>8<br>.10<br>.12<br>.13<br>.13<br>.14                      |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>TI<br>6.1<br>6.2<br>6.3 | RESET COMMUNICATION AND FCB BIT<br>USER DATA<br>TICK VALUE<br>RETRIEVING JPEG PICTURES FROM TDC4 DETECTORS<br>TRAFFIC DATA<br>DETECTOR STATUS<br>S EXAMPLES<br>INITIALIZATION OF COMMUNICATION<br>POLL TRAFFIC DATA                                  | 6<br>7<br>8<br>.10<br>.12<br>.13<br>.13<br>.14                      |
| 6 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>TI<br>6.1<br>6.2<br>6.3 | RESET COMMUNICATION AND FCB BIT<br>USER DATA<br>TICK VALUE<br>RETRIEVING JPEG PICTURES FROM TDC4 DETECTORS.<br>TRAFFIC DATA<br>DETECTOR STATUS<br>S EXAMPLES<br>INITIALIZATION OF COMMUNICATION<br>POLL TRAFFIC DATA<br>EXAMPLE OF PICTURE RETRIEVAL | 6<br>7<br>8<br>.10<br>.12<br>.13<br>.13<br>.13<br>.14<br>.15<br>.16 |



## 1 Purpose

Purpose of this document is to provide information that enables programmers and software engineers to develop data gathering devices that can obtain road traffic information from non-intrusive traffic detectors such as the TDC series from ADEC Technologies. TDC detectors are equipped with a half-duplex RS 485 interface that runs on 9600 baud, 8 characters, even Parity, 1 Stop-bit (9600, 8E1). Any device attempting to query traffic information must adhere to these settings.

# 2 Principle

The protocol is binary in nature, hence does not allow users to query information using terminal programs such as Windows Hyper Terminal. Half-duplex means that the client (PC, data-logger etc.) must send a query to the detector, that will response with the requested data - only one device at any given time is sending data, in accordance with the transmission rules below. The TDC does not send unsolicited data packets.

## **3** Protocol Format

## 3.1 Byte

Following the 8-E-1 rule, each byte is encoded into 11 bits as follows:

| Start | Bit 0 | Bit 1 | Bit 2 | Bit 3 | Bit 4 | Bit 5 | Bit 6 | Bit 7 | Parity | Stop |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------|
|       | LSB   |       |       |       |       |       |       | MSB   |        |      |
| 0     | Ν     | Ν     | Ν     | Ν     | Ν     | Ν     | Ν     | Ν     | Р      | 1    |

## 3.2 Packet

Keeping the Byte sequence in mind, each multi-byte packet consists of a sequence of bytes in the following format:

| Header Application Data Checksum End byte |
|-------------------------------------------|
|-------------------------------------------|

Where as:

Header: Identifies protocol type etc.

Application data: includes everything application specific, including detector address (RS 485 ID), parameter values etc.

Checksum = Sum of all byes in Application Data modulo 256.

Multi-byte values are transmitted higher-valued bytes first, for example a 16-bit value of 0x1234 is transmitted as follows:

| Byte n-1 | Byte n | Byte n+1 | Byte n+2 |  |
|----------|--------|----------|----------|--|
|          | 0x12   | 0x34     |          |  |

The protocol implements three basic packet types:

- Long Frame
- Short Frame
- Single Character

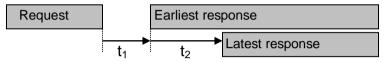
## 3.3 Long Frame, Variable Length

|        | Hea    | ader   |        | Арр          | lication D  | СНК        | EndByte       |        |
|--------|--------|--------|--------|--------------|-------------|------------|---------------|--------|
| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5       | Byte 6      | Byte<br>7m | Byte<br>n - 1 | Byte n |
| 0x68h  | Length | Length | 0x68h  | CTRL<br>Byte | ADR<br>Byte | Data       | Check-<br>sum | 0x16h  |

## 3.4 Short Frame, 5 Bytes Fixed Length

| Header | Applicat  | ion Data | СНК      | EndByte |
|--------|-----------|----------|----------|---------|
| Byte 1 | Byte 2    | Byte 3   | Byte 4   | Byte 5  |
| 0x10h  | CTRL Byte | ADR Byte | Checksum | 0x16h   |

## 3.5 Single Character


| Header |
|--------|
| Byte 1 |
| 0xE5h  |

# 4 Communication

## 4.1 Data Flow

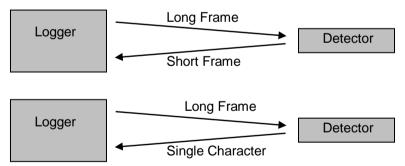
Besides the format of the bytes and data packets, the following rules apply:

- 1. Telegrams that don't meet the above format are discarded
- 2. After receiving a request, the response must be sent after 33 bits (3.3 ms,  $t_1$ ) but not later than 10 ms thereafter ( $t_2$ ):



## 4.2 Protocol Primitives

The PC or data-logger connects to the detector whereby any of the following protocol primitives are used:


#### 4.2.1 Send / No Reply

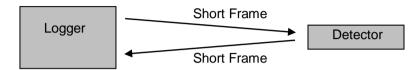
The data logger sends a data packet to the detector, no response is expected - the detector does not respond to confirm the receipt of the packet:



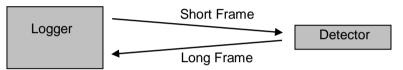
## 4.2.2 Send / Confirm

The data logger sends a packet to the detector, the detector replies with a short frame or a single character to confirm the receipt of the packet:






#### 4.2.3 Request / Response


The logger sends a short packet to the detector requesting information, the detector replies with any appropriate response. The request for example is a request for new traffic data, upon which the detector replies that no information has arrived using a single character.



The detector may also response using a Short Frame, to confirm the receipt of a command:



To report traffic data, the detector receives the request for such data and replies with a Long Frame containing the information of one or more vehicle:



A traffic detector never sends traffic data without having received a request to do so.

## 4.3 The Control Byte

The Control Byte is part of every frame except the single character response. The composition and the meaning of the bits within the control byte depend on the originator of the packet to which the Control Byte belongs:

#### 4.3.1 The Control Byte from the Logger

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3     | Bit 2 | Bit 1 | Bit 0 |  |
|-------|-------|-------|-------|-----------|-------|-------|-------|--|
| MSB   |       |       |       |           |       |       | LSB   |  |
| 0     | 1     | FCB   | FCV   | See below |       |       |       |  |

- FCB: The Frame Count Bit and Frame Count Valid (FCB, FCV) is used by the peers to indicate whether a packet has been received properly. To indicate to the detector that the previous packet has been properly received, the logger toggles the FCB bit in the subsequent request. If it doesn't do so, the detector will repeat the previous response. The FCB bit is only used in conjunction with requests for traffic data. The first query to a detector is '1'.
- FCV: a value of '1' indicates if the FCB is valid and needs consideration
- Bit 0 3: these lower 4 bits specify the nature of the content of the inquiry as follows:
  - 0: Reset communication and FCB bit, start with anticipated value of '1', see section 5.1 on page 6.
  - 3: Requests the detector to return the user data
  - 4: Requests the detector to return the tick value
  - 8: Requests the detector to return all available information of the recent vehicle(s)
  - 9: Requests the detector to return its status

#### 4.3.2 The Control Byte from the Detector

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3     | Bit 2 | Bit 1 | Bit 0 |  |
|-------|-------|-------|-------|-----------|-------|-------|-------|--|
| MSB   |       |       |       |           |       |       | LSB   |  |
| 0     | 0     | ACD   | DFC   | See below |       |       |       |  |

ACD: Access Demand, the detector does not use this function, the value is always 0

DFC: Data flow control, the detector does not use this function, the value is always 0

Bit 0 - 3: these four lower bits specify the type of data contained within the packet, in particular:

- 4: Tick value
- 8: Traffic Data
- 11: Detector Status

It is worth noting that Bit 6 is '1' in packets that originate with the logger, equally, the bit is set to '0' in all packets sent from detectors.

## 5 Data Specification

Note: The examples below assume the address (RS 485 ID) of the detector is 1 for illustration purposes.

#### 5.1 Reset Communication and FCB Bit

#### 5.1.1 Request

| Header | Applicat           | ion Data | СНК      | EndByte |  |
|--------|--------------------|----------|----------|---------|--|
| Byte 1 | Byte 2             | Byte 3   | Byte 4   | Byte 5  |  |
| 0x10h  | CTRL Byte ADR Byte |          | Checksum | 0x16h   |  |
| 0x10h  | 0x40h              | 0x01h    | 0x41h    | 0x16h   |  |

#### 5.1.2 Response

| Header |
|--------|
| Byte 1 |
| 0xE5h  |

The detector replies with 'E5' single-byte response, indicating the data buffer has been emptied and the next FCB is expected to be '1'.

#### 5.2 User Data

The detector is set to specific settings which it does or does not apply depending on whether requested feature are supported or required as given by the setup, type and firmware of the detector:

#### 5.2.1 Request

| Header |        |        |        |              | Application |        | СНК    | EndByte       |         |
|--------|--------|--------|--------|--------------|-------------|--------|--------|---------------|---------|
| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5       | Byte 6      | Byte 7 | Byte 8 | Byte 9        | Byte 10 |
| 0x68h  | Length | Length | 0x68h  | CTRL<br>Byte | ADR<br>Byte | Data   | Data   | Check-<br>sum | 0x16h   |
| 0x68h  | 0x04h  | 0x04h  | 0x68h  | 0x73h        | 0x01h       | #1     | #2     | Σ             | 0x16h   |



The bits in the two data bytes #1 and #2 assume the following purpose:

| Value Byte #1 | Value Byte #2     | Description                                 |  |  |
|---------------|-------------------|---------------------------------------------|--|--|
| 0x00h         | 0x00h             | Set detection mode to normal (Frontfire)    |  |  |
|               | Any value ≠ 0x00h | Set detection mode to reverse(i) (Backfire) |  |  |
| 0x01h         | Any               | Enable status information                   |  |  |
| 0x0Eh         | 0x00h             | Reset wrong-way driver flag(ii)             |  |  |
|               | 0x01              | Static detector info (iii)                  |  |  |
| 0x0Fh         | 0x02              | Dynamic detector info (iii)                 |  |  |
|               | 0x03              | Reset sync timer (iii)                      |  |  |

i) only supported in the model TDC3-2

- ii) if "wrong-way driver auto-reset" flag is switched on (factory default) using the ADEC DetSoft software, the wrong-way driver flag is reset automatically when the next response message containing vehicle data of a normal-driving vehicle is transmitted.
- iii) Not implemented unless specified

#### 5.2.2 Response

| Header |
|--------|
| Byte 1 |
| 0xE5h  |

## 5.3 Tick Value

This command asks the detector to return the current value of the 24-bit tick value. 1 tick lasts 2.5 ms. This value is only available in the TDC3(4) models with 2+1, 5+1 and 8+1 vehicle classes.

#### 5.3.1 Request

| Header | Applicat  | ion Data | СНК      | EndByte |
|--------|-----------|----------|----------|---------|
| Byte 1 | Byte 2    | Byte 3   | Byte 4   | Byte 5  |
| 0x10h  | CTRL Byte | ADR Byte | Checksum | 0x16h   |
| 0x10h  | 0x44h     | 0x01h    | 0x45h    | 0x16h   |

#### 5.3.2 Response

| Header |        |        | Application Data |                      |             |                |   | СНК           | EndByte |         |
|--------|--------|--------|------------------|----------------------|-------------|----------------|---|---------------|---------|---------|
| Byte 1 | Byte 2 | Byte 3 | Byte 4           | Byte 5               | Byte 6      | e 6 Byte 7 - 9 |   |               | Byte 10 | Byte 11 |
| 0x68h  | Length | Length | 0x68h            | CTRL<br>Byte         | ADR<br>Byte | Data Data Data |   | Check-<br>sum | 0x16h   |         |
| 0x68h  | 0x05h  | 0x05h  | 0x68h            | 0x04h 0x01h #1 #2 #3 |             |                | Σ | 0x16h         |         |         |

Data bytes #1 – #3 contain the tick value.

## 5.4 Retrieving JPEG Pictures From TDC4 Detectors

Picture data from the TDC4 is transmitted embedded in the TLS "User-Data", Code 3, packet. Since the transmission of an image can take longer than it takes for 4 vehicles to pass, it is good design practice to keep querying for traffic data during the transmission of the image data.

#### 5.4.1 Request

|        | Header |        |        | Application Data     |        |        |          | CHK    | EndByte |  |
|--------|--------|--------|--------|----------------------|--------|--------|----------|--------|---------|--|
| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5               | Byte 6 | Byte 7 | Byte 8-# | Byte#  | Byte#   |  |
| 0x68h  | Length | Length | 0x68h  | CTRL                 | ADR    | Cmd    | Data     | Check- | 0x16h   |  |
| 0,0001 | Lengin | Lengin | 020011 | Byte                 | Byte   | Byte   | Dala     | sum    | UXION   |  |
| 0x68h  | Len    | Len    | 0x68h  | 0x7 <mark>3</mark> h | 0x01h  | #      | #        | Σ      | 0x16h   |  |
| Notes  |        |        |        |                      |        |        | (i)      |        |         |  |

(i) The Data-byte is not present unless the Cmd-Byte contains the 'Execute Command' (Value 0x50)

CTRL-Byte, see 4.3.1 on page 5, 0x70 (packet sent by logger) + 0x03 (Request user data)

The Cmd-byte is used without data except for use with the Execute Command which requires Byte 8 to contain the actual command to be executed:

|                               | User Data: Cmd Byte from Primary |                   |        |       |       |       |       |  |  |  |
|-------------------------------|----------------------------------|-------------------|--------|-------|-------|-------|-------|--|--|--|
| Bit 7                         | Bit 6                            | Bit 5             | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |  |  |
| Bits 4-7 cont<br>values are p | ain the value of toossible:      | the command, th   | 0      | 0     | 0     | 0     |       |  |  |  |
|                               | 1 → Get Statu                    | S                 |        |       |       |       |       |  |  |  |
|                               | 2 → Get Data                     |                   |        |       |       |       |       |  |  |  |
|                               | 5 → Execute                      | Command           |        |       |       |       |       |  |  |  |
|                               | 6 → Get Lengt                    | h (of picture, in | Bytes) |       |       |       |       |  |  |  |

#### 5.4.2 Data-Byte

Data-byte is only necessary when the Cmd Byte refers to it through the 'Execute Command'. The following commands are possible:

|       | Data (Byte 8)                                                               |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------|--|--|--|--|--|
| Value |                                                                             |  |  |  |  |  |
| 0x01  | $\rightarrow$ Take picture (capture scene with current settings)            |  |  |  |  |  |
| 0x02  | $\rightarrow$ Release picture (after transmission or when interrupted etc.) |  |  |  |  |  |
| 0x03  | $\rightarrow$ Reset communication (between detector and camera subsystem)   |  |  |  |  |  |
| 0x04  | → Reset Camera (causes the camera to perform reset on itself)               |  |  |  |  |  |

<u>Note</u>: As with all other operation-related and device-specific settings, it is necessary to use ADEC installation and commissioning software to configure the camera properties <u>prior</u> taking pictures, such as the desired picture size, whether to automatically capture pictures on certain traffic conditions etc.

The picture is encoded in JPEG format. The detector is first instructed to capture a picture, subsequently, the picture size is queried from the detector and lastly the actual picture data is retrieved. While not mandatory, it is good practice to release the picture after it has been retrieved. The detector response confirms any commands by repeating the command back to the caller, adding any status information to the lower four bits of the command byte (Byte 7 of the user-data packet)

#### 5.4.3 Response message structures

The response message can take various forms, depending on what the query to the detector.

|        | Header |        |        |                      | Application Data |             |          |               | EndByte |
|--------|--------|--------|--------|----------------------|------------------|-------------|----------|---------------|---------|
| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5               | Byte 6           | Byte 7      | Byte 8-# | Byte#         | Byte#   |
| 0x68h  | Length | Length | 0x68h  | CTRL<br>Byte         | ADR<br>Byte      | Cmd<br>Byte | Data     | Check-<br>sum | 0x16h   |
| 0x68h  | Len    | Len    | 0x68h  | 0x0 <mark>3</mark> h | 0x01h            | #           | #        | Σ             | 0x16h   |
| Notes  |        |        |        |                      |                  |             | (i)      |               |         |



The Cmd Byte repeats the command received by the detector, Bit0-Bit3 always contain the status of the detector:

|       | User Data: Cmd Byte from Detector |                                   |         |         |               |                            |              |       |  |
|-------|-----------------------------------|-----------------------------------|---------|---------|---------------|----------------------------|--------------|-------|--|
| Bit 7 | Bit 6                             | Bit 5                             | Bit 4   | Bit 3   |               | Bit 2                      | Bit 1        | Bit 0 |  |
|       | ain the value of the pre-         | the command the<br>evious request | offline | e       | busy          | error                      | pic          |       |  |
|       |                                   |                                   |         | offline | $\rightarrow$ | The camera available       | is currently | not   |  |
|       |                                   |                                   |         | busy    | $\rightarrow$ | The camera<br>repeat reque |              | busy, |  |
|       |                                   |                                   |         | error   | $\rightarrow$ | An error has               | s occurred   |       |  |
|       |                                   |                                   |         | pic     | $\rightarrow$ | A picture is camera read   |              |       |  |

#### 5.4.4 Response Data Byte

#### 5.4.4.1 Response to Get Status Request

|       | Data (Byte 8): Trigger Source(s)                |       |                     |   |   |   |   |  |  |  |
|-------|-------------------------------------------------|-------|---------------------|---|---|---|---|--|--|--|
| Bit 7 | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |       |                     |   |   |   |   |  |  |  |
| 0     | 0                                               | Queue | Wrong-Way<br>Driver | 0 | 0 | 0 | 0 |  |  |  |

A value of '1' of either bit indicates that the corresponding event will trigger the detector to capture a picture automatically

#### 5.4.4.2 Response to Get Length Request

| Data (Byte 8-11): Picture Size [Bytes] |                                      |  |  |  |  |  |  |  |  |
|----------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|
| Byte 8                                 | Byte 8 Byte 9 Byte 10 Byte 11        |  |  |  |  |  |  |  |  |
| Bit 24-31                              | Bit 24-31 Bit 16-23 Bit 8-15 Bit 0-7 |  |  |  |  |  |  |  |  |

This request is sent to retrieve the number of bytes the JPEG image contains. The response contains a 32-bit number indicating the size of the picture. <u>Note</u> that the request normally has to be sent <u>twice or more</u> as the first query causes the detector to calculate the length, the subsequent query will return the proper size (in bytes) of the image. The 'busy' flag is returned instead.

#### 5.4.4.3 Response to Get Data Request

| Data (Byte 8-n): JPEG Picture Data |                                              |                  |                 |  |            |  |  |  |  |
|------------------------------------|----------------------------------------------|------------------|-----------------|--|------------|--|--|--|--|
| Byte 8                             | Byte 8 Byte 9 Byte 10 Byte 11 Byte 12 Byte n |                  |                 |  |            |  |  |  |  |
| Packet #<br>High                   | Packet #<br>Low                              | Data Len<br>High | Data Len<br>Low |  | Image Data |  |  |  |  |

• Packet # (Hi/Lo) contain the sequence of the packet. The first packet contains '0x00 0x00'

- Data Len (Hi/Lo) contain the actual number of bytes in "Image Data", for standard 64-byte image data per packet, the value is '0x00 0x40', the last byte is therefore Byte 51. <u>Note</u> that the last frame may contain fewer than 64 bytes net
- Image Data is the JPEG-formatted picture data. The response contains no Image Data and the 'busy' flag set if no image data is available

#### 5.4.4.4 Other Responses

The responses to the Execute Command requests do not contain additional data. The response contains mere confirmation and the current value of the status flags, see first section of this chapter.

## 5.5 Traffic Data

The logger obtains traffic information from the detector using this request. The detector responses with 'E5' if no new vehicles have passed since the last request, or with the detailed information of each of the vehicles that have passed since the past request. The maximum number of vehicles that the detector can store is four. Any additional vehicles will cause the data of the oldest vehicle to be replaced with the data of the most recent vehicle (FIFO).

#### 5.5.1 Request

| Header | Application Data |          | СНК      | EndByte |
|--------|------------------|----------|----------|---------|
| Byte 1 | Byte 2           | Byte 3   | Byte 4   | Byte 5  |
| 0x10h  | CTRL Byte        | ADR Byte | Checksum | 0x16h   |
| 0x10h  | 0x58h            | 0x01h    | 0x59h    | 0x16h   |

#### 5.5.2 Response – No data

If there's no new vehicle information, the detector responds acknowledging the receipt of the request. The logger then knows that there's no new vehicle information and no status change has occurred either.

| Header |  |
|--------|--|
| Byte 1 |  |
| 0xE5h  |  |

#### 5.5.3 Response – Pending Status and No Traffic Data

If a status is pending the detector reports the status as follows:

|        | Header |        |        | Application Data |             |        | СНК    | EndByte |
|--------|--------|--------|--------|------------------|-------------|--------|--------|---------|
| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5           | Byte 6      | Byte 7 | Byte 8 | Byte 9  |
| 0x68h  | Length | Length | 0x68h  | CTRL             | ADR<br>Dute | Data   | Check- | 0x16h   |
|        |        |        |        | Byte             | Byte        |        | sum    |         |
| 0x68h  | 0x03h  | 0x03h  | 0x68h  | 0x08h            | 0x01h       | Status | Σ      | 0x16h   |

See section 5.6.2 on page 12 for details on description of bits in the status byte.

## 5.5.4 Response With Queue Status

If a queue status is pending the detector sends traffic data as follows:

#### The response to the first request after a queue is detected returns

- speed = 0
- class = 32 (TDC3-2 / TDC4-2) or class = 6 (TDC3-3 / TDC4-3, TDC3-5 / TDC4-5, TDC3-8 / TDC4-8)
- occupancy = time between request and detection of queue
- time gap = time between beginning of queue and event immediately preceding queue detection
- counter = value of the last vehicle

#### Request during queue returns

- speed = 0
- class = 32 (TDC3-2 / TDC4-2); class = 6 (TDC3-3 / TDC4-3, TDC3-5 / TDC4-5, TDC3-8 / TDC4-8)
- occupancy = time since last request occurred
- time gap = 0 sec
- counter = value of the last vehicle

#### Request after queue is finish

- speed = vehicle speed (subject to significant inaccuracies)
- class = 32 (TDC3-2 / TDC4-2); class = 6 or truck (TDC3-3 / TDC4-3, TDC3-5 / TDC4-5, TDC3-8 / TDC4-8)
- occupancy = time since last request occurred
- time gap = 0 sec
- counter = value of the last vehicle plus 1



#### 5.5.5 Response – Traffic data

|        | Hea    | der    |        | Ар     | plication I | СНК   | EndByte |        |
|--------|--------|--------|--------|--------|-------------|-------|---------|--------|
| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6      | Byte  | Byte    | Byte n |
|        |        |        |        |        |             | 7 n-2 | n-1     |        |
| 0x68h  | Length | Length | 0x68h  | CTRL   | ADR         | Data  | Check-  | 0x16h  |
|        | -      | -      |        | Byte   | Byte        |       | sum     |        |
| 0x68h  | n-6    | n-6    | 0x68h  | 0x08h  | 0x01h       | Data  | Σ       | 0x16h  |

The data section consists of three subsections (vehicles 2, 3 and 4 are optional data):

|        | Data                                 |                        |      |                               |  |  |  |  |  |
|--------|--------------------------------------|------------------------|------|-------------------------------|--|--|--|--|--|
| Byte 7 | Byte 8 – 11                          | Byte 12 – <i>k</i>     |      | Bytes<br>n- <i>k</i> -2 … n-2 |  |  |  |  |  |
| Status | Lifetime Vehicle<br>Counter (32-bit) | Vehicle<br>Information |      | Vehicle<br>Information        |  |  |  |  |  |
| 0x0Bh  | <b>0 – 2</b> <sup>32</sup>           | Vehicle 1              |      | Vehicle 4                     |  |  |  |  |  |
| Notes: |                                      | (i)                    | (ii) | (ii)                          |  |  |  |  |  |

i) The vehicle data comprises 6, 7 or 11 bytes per vehicle as a function of the different optional features. Note that TDC3-2 and the TDC4-2 detector models TLS Length field is set to 0 if 'On', it is omitted when 'Off'. The TDC1-PIR always provides vehicle length information.

| TLS Length                                 | Off | On  | On |
|--------------------------------------------|-----|-----|----|
| Lane-Changing vehicle detection            | Off | Off | On |
| Vehicle data length k, per vehicle [bytes] | 6   | 7   | 11 |

ii) Data for more than one vehicle is only sent if more data is in the buffer.

| Vehicle 1 Information |                             |                     |                   |                                               |         |                      |          |                        |          |  |
|-----------------------|-----------------------------|---------------------|-------------------|-----------------------------------------------|---------|----------------------|----------|------------------------|----------|--|
| Byte 12               | Byte 13                     | Byte 14             | Byte 15           | Byte 16                                       | Byte 17 | Byte 18              | Byte 19  | Byte 20-21             | Byte 22  |  |
| Speed                 | Class &<br>Lane<br>Position | Occup<br>in units o |                   | Time Gap to<br>previous vehicle<br>in [10 ms] |         | Length<br>in [0.1 m] | reserve  | Time Stamp<br>[2.5 ms] | reserve  |  |
| 00xFFh<br>(0 255)     | 0x01h<br>0x3Fh              | 0 0x<br>(0 65       | FFFFh<br>55.35 s) | 0 0xFFFFh<br>(0 655.35 s)                     |         | 0 0xFFh<br>(025.5 m) | 0        | 0 0xEA60h<br>(0 150 s) | 0        |  |
| Notes:                | (iv)                        |                     |                   |                                               |         | (i)                  | (i, iii) | (i, iii)               | (i, iii) |  |

iii) These three bytes is a time-stamp value sync'ed between Master and Slaves and is only added in the frame if the lane-changing vehicle detection feature is turned on.

iv) Only available on 2+1, 5+1 and 8+1 models with lane-changing feature turned on. The upper two bits of the vehicle class indicate the lane position of the vehicle in driving direction, as follows:

| La       | Lane Information & Vehicle Class Information |                                     |  |  |  |  |  |  |
|----------|----------------------------------------------|-------------------------------------|--|--|--|--|--|--|
| Bit 7    | Bit 6                                        | Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |
| Lane Inf | ormation                                     | Vehicle Class Information           |  |  |  |  |  |  |
| 0        | 0                                            | $\rightarrow$ Middle of the lane    |  |  |  |  |  |  |
| 0        | 1                                            | $\rightarrow$ Left side of the lane |  |  |  |  |  |  |
| 1        | 0                                            | $\rightarrow$ Right side of lane    |  |  |  |  |  |  |

|        | 10<br>7<br>11<br>6<br>2 | 6 | 32<br>6 | 32 | 1 |
|--------|-------------------------|---|---------|----|---|
| 2<br>2 | 11<br>6                 | 6 |         | 32 | 1 |
| ?<br>  | 6                       |   | 6       | 32 | 1 |
| ?      |                         |   | 6       |    |   |
|        | 2                       | 2 |         |    |   |
|        |                         |   |         |    |   |
|        | 5                       | 5 |         |    | 3 |
|        | 3                       | 3 | 33      | 33 |   |
|        | 8                       | 4 |         |    | 4 |
| ADEC   | 9                       | 4 |         |    | 4 |
| ,      | ADEC                    |   | 4       |    | 4 |

#### 5.5.5.1 Vehicle Class Information (according to TLS)

The TDC1-PIR supports three classes by length: class 1: <5.6 m, class 3: 5.6 m - 12.2 m, class 4: >12.2 m i)

#### 5.6 **Detector Status**

The detector status is normally sent along with the traffic information. If no traffic information is present, the detector sends the status only (see section 5.5.3 on page 10). Please note that the bits in the Status Byte have different meanings for different families of TDC detectors.

#### 5.6.1 Request

| Header | Application Data |          | СНК      | EndByte |
|--------|------------------|----------|----------|---------|
| Byte 1 | Byte 2           | Byte 3   | Byte 4   | Byte 5  |
| 0x10h  | CTRL Byte        | ADR Byte | Checksum | 0x16h   |
| 0x10h  | 0x49h            | 0x01h    | 0x4Ah    | 0x16h   |

#### 5.6.2 Response

|        | Hea    | der    |        | Application Data |             |        | СНК           | EndByte |
|--------|--------|--------|--------|------------------|-------------|--------|---------------|---------|
| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5           | Byte 6      | Byte 7 | Byte 8        | Byte 9  |
| 0x68h  | Length | Length | 0x68h  | CTRL<br>Byte     | ADR<br>Byte | Status | Check-<br>sum | 0x16h   |
| 0x68h  | 0x03h  | 0x03h  | 0x68h  | 0x0Bh            | 0x01h       | Status | Σ             | 0x16h   |

#### 5.6.3 TDC3 Series Status Byte

The status-bit is encoded as follows, a value of '1' indicates active:

|          | Status Byte   |       |                     |                         |                   |                      |                       |  |  |  |
|----------|---------------|-------|---------------------|-------------------------|-------------------|----------------------|-----------------------|--|--|--|
| Bit 7    | Bit 6         | Bit 5 | Bit 4               | Bit 3                   | Bit 2             | Bit 1                | Bit 0                 |  |  |  |
| HW fault | Sync<br>fault | Queue | Wrong-way<br>driver | Ultrasonic notification | IR 2 notification | IR 1<br>notification | Radar<br>notification |  |  |  |
| Notes:   |               |       | (i)                 |                         |                   |                      |                       |  |  |  |

i) Important: wrong-way driver notification may be available for transmission after the actual vehicle event of the wrong-way driving vehicle has already occurred, this means that the vehicle data of the wrong-way driver may not show the wrong-way driver flag yet. Subsequent request will show the updated wrong-way driver flag, see 5.5.3 on page 10.



#### 5.6.4 TDC1-PIR Series Status Byte

| Status Byte |       |       |                     |       |                    |                        |                    |
|-------------|-------|-------|---------------------|-------|--------------------|------------------------|--------------------|
| Bit 7       | Bit 6 | Bit 5 | Bit 4               | Bit 3 | Bit 2              | Bit 1                  | Bit 0              |
| HW fault    |       | Queue | Wrong-way<br>driver |       | Low supply voltage | Thermo<br>notification | IR<br>notification |
| Notes       |       |       | (i)                 |       | (ii)               |                        |                    |

The status-bit is encoded as follows, a value of '1' indicates active:

i) Important: wrong-way driver notification may be available for transmission after the actual vehicle event of the wrong-way driving vehicle has already occurred, the means that the vehicle data of the wrong-way driver may not show the wrong-way driver flag yet. Subsequent request will show the updated wrong-way driver flag, see 5.5.3 on page 10.

This bit is set to '1' when the supply voltage drops below the minimum allowable value (see TDC1 ii) installation manual)

## 6 TLS Examples

The following examples illustrate the data exchange between the client (Logger, TLS out-station, computer) and the detector. In each example, is assumed that

- The detector's unique RS 485 ID (=address) is 1
- All data is shown in hexadecimal format. •

While it is not necessarily evident from the brief examples below, the FCB bit must be toggled with each subsequent requests. Not doing so indicates to the detector that the previous response has not been received and the detector then attempts to re-sending the same data as in the previous response. Consult 4.3.1 on page 5 for a detailed description on where the FCB bit is and how it needs to be handled.

#### Initialization of Communication 6.1

Detectors may or may not require communication reset to take place before traffic data can be requested. Therefore it is good design practice to always initialize the communication to each detector that is connected to the RS 485 segment before attempting to obtain traffic and status information:

#### 6.1.1 Request: Get Status

| Byte #      | 1            | 2         | 3        | 4        | 5              |
|-------------|--------------|-----------|----------|----------|----------------|
| Description | TLS msg type | CTRL Byte | ADR Byte | Checksum | TLS end-of-msg |
| Value       | 0x10         | 0x49      | 0x01     | 0x4A     | 0x16           |

CTRL-Byte, see 4.3.1 on page 5, 0x40 (data from logger) + 0x09 (get status)

#### 6.1.2 Response: Status Clear Via Long TLS Frame

| Byte #      | 1                 | 2    | 3    | 4    | 5    | 6      | 7    | 8       | 9    |
|-------------|-------------------|------|------|------|------|--------|------|---------|------|
| Description | Long frame header |      |      | CTRL | ADR  | Status | Chk  | TLS EOM |      |
| Value       | 0x68              | 0x03 | 0x03 | 0x68 | 0x0B | 0x01   | 0x00 | 0x0C    | 0x16 |

CTRL-Byte, see 4.3.2 on page 6, 0x0B (detector status)

#### 6.1.3 Response: Status Not Clear Via Long TLS Frame

| Byte #      | 1                 | 2    | 3    | 4    | 5    | 6      | 7    | 8       | 9    |
|-------------|-------------------|------|------|------|------|--------|------|---------|------|
| Description | Long frame header |      |      | CTRL | ADR  | Status | Chk  | TLS EOM |      |
| Value       | 0x68              | 0x03 | 0x03 | 0x68 | 0x0B | 0x01   | 0x08 | 0x14    | 0x16 |

CTRL-Byte, see 4.3.2 on page 6, 0x0B (detector status)

Status, see 5.6 on page 12, 0x08 (ultrasonic fault, maybe commissioning hasn't completed successfully)

#### 6.1.4 Request: Reset Communication

| Byte #      | 1            | 2         | 3        | 4        | 5              |
|-------------|--------------|-----------|----------|----------|----------------|
| Description | TLS msg type | CTRL Byte | ADR Byte | Checksum | TLS end-of-msg |
| Value       | 0x10         | 0x40      | 0x01     | 0x41     | 0x16           |

#### 6.1.5 Response: Confirm Reset of Communication

| Byte #      | 1               |
|-------------|-----------------|
| Description | TLS Single Char |
| Value       | 0xE5            |

## 6.2 Poll Traffic Data

After 0xE5 has been received above, the detector is now ready to receive requests for traffic data. Traffic data is requested as follows (excerpt from DetSoft Protocol Sniffer).

Each row in the table is a request or a response. The arrow after the time-stamp indicates whether it is a request or a response:

 $\rightarrow$  request

 $\leftarrow$  response

Format of the time-stamp:

HH:MM:SS:LLL  $\rightarrow$  hours, minutes, seconds, milliseconds

| 03:12:31:218 → 10 58 <mark>01</mark> 59 16                                    | Request to ID 1 to send traffic data. FCB is not set here                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03:12:31:250 ← 68 03 03 68 08 01 0 <mark>8</mark> 11 16                       | no traffic data but ultrasound alarm is still active                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 03:12:38:453 → 10 <mark>7</mark> 8 01 79 16                                   | Request to ID 1 to send traffic data. FCB is set here                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 03:12:38:531 ← E5                                                             | traffic data buffer is empty, and no alarm is active                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 03:13:11:453 → 10 <mark>5</mark> 8 01 59 16                                   | Request to ID 1 to send traffic data. FCB is not set here                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 03:13:11:500 ← 68 0E 0E 68 08 01 00 00 00<br>00 04 4E 08 03 65 1C 68 FE 4D 16 | Response from detector ID 1 with traffic data (CTRL-Byte is 8):<br>status shows no alarms, lifetime <u>vehicle counter</u> shows 0x00, 0x00,<br>0x00, 0x04 $\rightarrow$ 4 vehicles, followed by<br>0x4E: vehicle speed = 78 km/h<br>0x08: vehicle class, 8 on TDC3-8 means Truck with Trailer<br>0x03, 0x65: occupancy = 0x0365 $\rightarrow$ 869d $\rightarrow$ 8.69 seconds<br>0x1c 0x68: time gap = 0x1c68 $\rightarrow$ 7272 $\rightarrow$ 72.72 seconds<br>0xFE: length = 0xFE = 254 $\rightarrow$ 25.4 meters |



# 6.3 Example of picture retrieval

| 03:53:07:937 → 68 04 04 68 73 04 50 01 C8 16                                                                                                                                                                                                                      | 0x68 04 04 68 TLS long-frame header<br>0x73 7 from primary, FCB set,<br>user data (Code 3)<br>0x04 RS 485 ID of detector<br>0x50 "Execute Command"<br>0x01 Command = 1: Take Picture |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03:53:07:968 ← 68 04 04 68 03 04 50 01 58 16                                                                                                                                                                                                                      | 0x68 04 04 68TLS long-frame header0x03TLS Code 3, msg originating w/ detector0x04RS 485 ID of sender0x50"Execute Command"0x01Command = 1: Take Picture                               |
| 03:53:08:031 → 68 03 03 68 53 04 60 B7 16                                                                                                                                                                                                                         | 0x68 03 03 68TLS long-frame header0x535 from primary, FCB not set, user data0x04RS 485 ID of detector0x60Get Length (of picture data)                                                |
| 03:53:08:062 ← 68 03 03 68 03 04 6 <mark>5</mark> 6C 16                                                                                                                                                                                                           | 0x68 03 03 68 TLS long-frame header<br>0x03 Code 3 response<br>0x04 RS 485 ID of sender<br>0x6 <mark>5</mark> GetLength, <mark>picture ready</mark> , camera busy                    |
| 03:53:08:109 → 68 03 03 68 73 04 60 D7 16                                                                                                                                                                                                                         | < query length again >                                                                                                                                                               |
| 03:53:08:140 ← 68 07 07 68 03 04 6 <mark>1 00 00 31 8C</mark> 25 16                                                                                                                                                                                               | 0x6 <mark>1</mark> Get Length, picture ready<br>Length: 0x0000318c = 12,684 bytes                                                                                                    |
| 03:53:08:187 -> 68 03 03 68 53 04 20 77 16                                                                                                                                                                                                                        | 0x20 Get Data                                                                                                                                                                        |
| 03:53:08:296 ← 68 47 47 68 03 04 21 00 00 00 40 FF D8<br>FF FE 00 24 D9 28 16 C2 00 00 00 00 00 00 00 00 00 00<br>00 00 00                                                                                                                                        | 0x2 <mark>1</mark> Get data, <mark>picture ready</mark><br>0x00 00 00 40 09 08 07<br>Picture data, frame <mark>0x0000</mark>                                                         |
| 03:53:08:359 → 68 03 03 68 73 04 <mark>20</mark> 97 16                                                                                                                                                                                                            |                                                                                                                                                                                      |
| 03:53:08:468 ← 68 47 47 68 03 04 21 00 01 00 40 07 08<br>10 0B 0C 0A 0D 13 11 14 14 13 11 12 12 15 18 1E 1A 15<br>16 1D 17 12 12 1A 24 1B 1D 1F 20 22 22 22 14 19 25 28<br>25 21 27 1E 21 22 20 01 06 06 06 08 07 08 0F 09 09 0F<br>20 16 12 16 20 20 20 20 ED 16 | 0x2 <mark>1</mark> Get data, <mark>picture ready</mark><br>0x00 01 00 40 20 20 20<br>Picture data, frame <mark>0x0001</mark>                                                         |
| transmission of picture data frames                                                                                                                                                                                                                               |                                                                                                                                                                                      |
| 03:53:42:343 → 68 03 03 68 73 04 <mark>20</mark> 97 16                                                                                                                                                                                                            |                                                                                                                                                                                      |
| 03:53:42:453 ← 68 47 47 68 03 04 21 00 C5 00 40 5D D0<br>A6 32 BC F1 D6 91 D9 36 70 CB C7 4E 6A 39 58 EC 05<br>91 63 C1 65 E9 EB 51 28 5E 49 75 E7 9E B4 B9 5A E8 08<br>8B 2A 14 96 75 C9 F7 A8 59 23 62 72 57 8F 7A 2C C6 93<br>29 CC 88 1B 01 C7 E7 55 25 82 16 | 0x2 <mark>1</mark> Get data, <mark>picture ready</mark><br>0x00 C5 00 40 E7 55 25<br>Picture data, frame <mark>0x00C5</mark>                                                         |
| 03:53:42:515 → 68 03 03 68 53 04 <mark>20</mark> 77 16                                                                                                                                                                                                            |                                                                                                                                                                                      |
| 03:53:42:562 ← 68 13 13 68 03 04 2 <mark>1 00 C6</mark> 00 0C 00 0E<br>AB F9 D3 B3 03 FF FF FF FF D9 0A 16                                                                                                                                                        | 0x2 <mark>1</mark> Get data, <mark>picture ready</mark><br>0x00 C6 00 40 FF FF D9<br>Picture data, frame <mark>0x00C6</mark>                                                         |
| 03:53:42:656 → 68 04 04 68 73 04 <mark>50 02</mark> C9 16                                                                                                                                                                                                         | 0x50 Execute command<br>0x02 Release picture                                                                                                                                         |
| 03:53:42:687 ← 68 04 04 68 03 04 <mark>5</mark> 0 <mark>02</mark> 59 16                                                                                                                                                                                           | 0x <mark>5</mark> 0 Execute command<br>0x <mark>02</mark> Release picture                                                                                                            |

# 7 SiTOS Examples

If the detector is configured to operate in SiTOS-mode, the behavior described below characterizes the request/respond protocol and the content of the long-frame packages.

The detectors must be configured with "Output TLS Length" and "Provide Lane Position" both turned on.

## 7.1 Reset Detection

When the detector resets, it must not respond to Code 8 request.

The TLS station must issue a Code 0 first for the detector to response to Code 8 requests.

The detector acknowledges Code 0 with E5.

The first Code 8 request after the Code 0 must return the status flags even if no flag is set, or the status flags together with vehicle data if there are vehicles in the buffer.

02:00:43:671 -> 10 58 03 5B 16 02:00:43:703 <- E5 02:00:44:671 -> 10 78 03 7B 16 02:00:44:687 <- E5

< Detector resets, TLS station continues to send Code 8 requests >



## 7.2 Traffic Data Inquiry

Traffic data requests is transmitted via Code 8

The detector responses via E5 if no traffic data is in buffer and no status flag is set.

The detector responds with Code 0 and the status-byte only if one or more of the status flags is set, even if no vehicle data are in the vehicle data buffer

If the detector has new vehicles in the buffer since the last request, it sends the vehicle data to the TLS station via Code 0 (never Code 8).

The response must include in any circumstance the TLS-length, the time-stamp and the 2 reserve bytes. Detector models (TDC 3-2 for example) that natively do not support TLS length or time-stamp for lane-changing vehicles compose and transmit same message with these specific bytes filled with '00' (zero).

02:18:18:453 -> 10 78 03 7B 16 02:18:18:468 <- E5 02:18:19:453 -> 10 58 03 5B 16 02:18:19:500 <- 68 12 12 68 00 03 00 00 00 086 4E 08 03 65 FC 9A FE 00 86 54 00 B5 16 02:18:20:453 -> 10 78 03 7B 16 02:18:20:484 <- E5 02:18:21:453 -> 10 58 03 5B 16 02:18:21:468 <- E5

< error occurs in ultrasonic subsystem >

02:18:22:453 -> 10 78 03 7B 16 02:18:22:487 <- 68 03 03 68 00 03 08 03 16 -> status change is reported even if no vehicle data in buffer 02:18:23:453 -> 10 58 03 5B 16 02:18:23:467 <- E5 02:18:24:453 -> 10 78 03 7B 16

| <u> </u>                 | CTRL Byte                   |
|--------------------------|-----------------------------|
| <mark>00, 08</mark>      | flags                       |
| <mark>00 00 00 86</mark> | vehicle counter             |
| <b>4</b> E               | speed                       |
| <mark>08</mark>          | class                       |
| 03 65                    | occupancy                   |
| FC 9A                    | time-gap                    |
| FE                       | TLS length                  |
| 00                       | reserve                     |
| 86 54                    | time-stamp                  |
| 00 B5 16                 | reserve, checksum, end-char |